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ABSTRACT

Stationary stable processes that are Fourier transforms of

symmetric stable independent increments processes are shown to have

a.s. finite conditional expectation of Xt given Xs and conditional

variance of Xt given Xt_6 , Xt-26' The associated conditional

expectation predictors are nonlinear in {Xs , s<t} but are mixtures

of predictors of the usual type based on the Gaussian model.
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INTRODUCT ION

The work presented here is part of a program extending the

classical theories of prediction, detection, and smoothing of

signals to encompass models in which Gaussian noise is replaced by

symmetric a-stable (SaS) noise, where 0 < a < 2 is the index of

stability. This is consistent with the full implications of the

theory of errors (Levy, 1925) and includes Gaussian noise as the

case a = 2.

It is important to realise that Gaussian noise (a = 2) results

in the frequency domain models being identical with the time domain

models, by Bochner's Theorem (Doob, 1953). But the same is not true

* for a ( 2. That is. with the notable exception of a = 2. the class

FT-SaS of processes which are Fourier transforms of SaS noise (e.g.

wave motions) will not be the same as the class of processes that

are the outputs of linear systems, such as AR1A models, driven by

SaS noise (Cline and Brockwell. 1985), (Makagon and Idandrekar,

1987).

Substantial progress has been made on the prediction problem

for processes of the FT-SaS type, i.e. stationary processes X -

f ei t1 Z(dX) where Z is an independent increments SaS process. In

the course of this work a number of basic methods have been

3
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developed which also have application to processes of the latter

type, including ARA models.

To understand the basic approach of this paper it is important

to know that 2n i.i.d. SaS random vectors tend to separate out like

-1/a
+ j , < j n (LePage. Woodroofe. and Zinn, 1981). and are in

general representable as mixtures of Gaussian distributions with

differing covariances (LePage. 1980. appended to this report). This

allows us to think of i.i.d. stable noise as inhomogenous Gaussian

noise with random a/2 stable covariances. As might be inferred from

remarks made above, the consequences of this inhomogeneity when

noise is in the form of wave amplitudes differ greatly from the

effects of noise entering in the form of terms driving difference

equations.

In recent work (Makagon and Mandrekar. 1987) there is defined

the concept of a generalized spectrum for any strictly stationary

stable process. In case the spectrum is given by independently

scattered measure, as above, they have shown that one can obtain the

linear analysis of such signals by methods analagous to those used

for Gaussian processes. This extends (Cambanis and Soltani. 1982)

to the case a 1 by a more general method.

However, linear prediction is not in general as good as

conditional expectation prediction. The latter has not been much

.44
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studied for stable processes because of the fact that E IX t is

infinite for a < 1. Surprisingly, by exploiting (LePage, 1980) we

will prove for FT-SaS processes (X t} that for every a the conditonal

expectations E(IXtI I Xs ) and E(X 2 Xt_. Xt 2 5 ) are almost surely

finite. This is surprising in view of the fact that for a < 1 the

expectations E IXti are infinite, and for all a < 2 the expectations

2
E X are infinite.

As a consequence of these conditional moments existing, the

conditional expectation predictor of Xt. regardless of the number of

predicting variables, is well-defined and optimal for conditional

mean squared error, provided the predicting variables include two

time points of the form t-6, t-26 for some 640. By combining these

results with (Cambanis and LePage 1987) it can be shown that for

a < 2 the conditional expectation predictor E(Xt I Xt-6 . 6 06 L) is

asymptotically consistent for Xt as 6 -+ 0 (excluding 0 in the

discrete case) and L - w, whereas the linear predictor is not.

Since the above conditional expectations turn out to be

a-posteriori averages of Gaussian conditonal expectations computed

% for various covariances, these non-linear conditional expectation

predictors are a smoothing of Hilbert space methods and are in fact

Bayesian predictors for a naturally occurring a-priori distribution

intrinsic to FT-SaS processes.

V5

.-4



The new methods generally allow us to compute quantities

previously thought to be undefined because stable r.v. lack certain

moments. For example, the identity E(Xt I Xs) E cos(A(t-s)),

where A is a random sample from the normalized spectral distribution

function was known for 1 < a 2 (Kanter and Steiger, 1974).

Corollary 2.1.2 below proves this result for 0 ( a ( 2 by a totally

new direct calculation which does not require existence of the

unconditional expectation and bypasses differentiation of the

characteristic function altogether. Certain other conditional and

unconditional integrals can be directly calculated by the same

method, including the integer moments of the characteristic function

of the processs conditioned on the invariant sigma algebra (Cambanis

and LePage, 1987).

As mentioned previously, this work is based on a representation

of FT-SaS processes as mixtures of stationary Gaussian processes

(with randomly chosen covariance function 0) due to (LePage. 1980).

The new observation, specialized to the case 9 = a{X_ l' Xo) and X =

X is that the conditional density of (X1. X.), given the sigma

field generated by the covariance function 0. cancels terms in the

conditional expected squared error of prediction. This forces

convergence of the conditional expectation E (X-E )2. Such

integrals, including E X. are computed as mixtures, on 0. of

6
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8-specific Gaussian integrals. The indicated predictors are thus

conditional mixtures of 8-specific Gaussian linear predictors.

STABLE PROCESSES

The log characteristic function of any stationary Gaussian

random functions having a continuous covariance takes the form

log E exp i =lrkXt = (2/2) EI =irk exp itkAl 2. (1.1

where a > 0 and 1 is a random variable whose probability

distribution function is the normalized spectral distribution

function. Stable analogues of these laws may be obtained by

replacing the exponent 2 in (1.1) by a number a in the range O<a<2.

In (LePage. 1980) it was proved that the resulting characteristic

functions are precisely those of the class of FT-SaS processes. The

following construction for such processes was given. For each O<a<2

define r.v. {X(t). tEaR} by

Xt = Y =lcos(A t + *i)y r . (1.2)

In (1.2). which converges a.s. for each t, the sequence of r.v. {.}A

(which we denote by A for brevity) are i.i.d. from any distribution

on IR; 0 are i.i.d. uniformly distributed on the interval r-,r,]: Y

are i.i.d. with Ely 1!0 finite; F are the consecutive arrival times

of a homogeneous Poisson process with unit intensity function on the

time domain IR+; and the sequences of r.v. A. S. Y, F are mutually

independent.

7
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From (LePage. 1980. Theorem 7.4) the series (1.2) converges

almost surely for each tR and O<a<2, and the r.v. defined by the

left side of (1.2) have log characteristic function

2-aB(a)C(a) ElYl a EI2=I rk exp itkAI
a. (1.3)

where B(a) = a J'O (cos(r)-l) dran = j+ Il+einlad .
r

From (1.3) it may be seen that the law of X depends on the law

of Y only through the a-th absolute moment. Taking {Y.} to be
IJ

Rayleigh distributed, equivalent to letting {Y.} be complex Gaussian

and taking the real part of {X(t), teIR). yields a process X which is ,I

conditionally Gaussian and stationary given the sequences A, F. The

process given by the infinite series (1.1) may be written

Xt = jR e ixt Z(dX). (1.4).."e
i~t

where Z is, conditionally on A, F, a Gaussian orthogonal random set

function supported on the sequence of frequencies A and -A, with

Z((-Ak}) = Z((Ak}) and Z((Ak) given by

(I)/ ( Ak)e j + 1(_A,=Ak)e-J). k~l. (1.5)

From (1.2) or (1.5) it is seen that the conditional covariance

function of X given A. F. is given by

S -=l 2 /a cos{jt)/2 tFN.

That is, {X(t), tFIR is conditionally Gaussian and stationary with

covariance (1.6) given A. F.

5-
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2. EXISTENCE OF CONDITIONAL MOMENTS

We require the formula E r = fi(d019) E6 , where n is a

non-negative polynomial in the coordinate r.v. of the random

function X. - is the a-field generated by a finite number of the

coordinate r.v., En is the Es-conditional expectation given 9, and

w(d6I9) is the regular conditional probability distribution of the

finite number of coordinate values of 0 which appear in E7. A

proof may be given by martingale methods from the corresponding

result for the discrete case which is P(AID) = 1 P(OAD)/P(D) = 20

P(OID) P6 (AID).

Theorem 2.1. Let X be a random function which is a mixture of

zero-mean Gaussian stationary processes. For real numbers st the

conditional expectation E5IXtI is almost surely finite, where 9 is a

a-algebra with respect to which X is measurable.

Proof. It is enough to prove that E 0 1l is finite a.s. If 0(0) =

0, then X0 = X 1 = 0 almost surely. For each fixed 0 with 0(0)>0,

the conditional distribution of X1 given X0 is normal with mean

X2
p(O.O.l) = E 0 XI = ((1)/(O))X O, and variance a 2(600.) =

0(o)(1-((l)/0(O)) 2). Then,

X0  X0

E IX(l)l = o E0 ix I r(dolX o )(0(O)>O) 0 10

f ~(0(0)>0) (IM(0.0.1)1 + c(O.0.l)) 7w(d~lX 0 ). (2.2)

9
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I.

Since 10(1)1 lo(o)1 a.s., the p-term of (2.2) is a.s. finitely

integrable. Now use w(d8IX0 ) = r(d8)r(X1O)ir(Xo), where r(rJO) =

(2r)- 1/ 2 0- /2(0) exp(-r2/20(0)), from which it is seen that the

a-term of (2.2) is also a.s. finitely integrable. o

Corollary 2.1.1. If 5 is a sigma algebra generated by a subset of

the random variables {X(t), teR}, then E XI = 1 r(dO19) E0X I. which

is a mixture of the O-specific Gaussian best linear predictors of X

based on 9. In particular, E XI  E(0(1)/O(O)IXo) X0 = (f-o(O))0)

w(dOIXo)(o(1)/O(o)) X0 . ,

Corollary 2.1.2. (Cambanis-LePage). For a process of the form (1.2)

with O<a 2, E(C(1)/O(O)IXo) E cos(Al).

Proof. The case a=2 is obvious. For a < 2. from (1.2) and (1.6)

X0  =1 cos( -) 1/2

8(1)/0(0) = Io0 r -2  cos(Xj)/2j= 1 F,j=l ji " 1

Since A, 0. F are independent and X is measurable a{O.F.}"

0×o Xo i:
x0  0

E (0(1)/@(0)) - E E(O(1)/0(0)I9,F)I

00 J -2/a E w( )IC -2/a
: j=l 2 z EcsAj)/ =l --

= E ros(A). 03

Since no special role is played by times zero and one, the formula
,.

E[O(t)/O(O)lX(s)] = E cos(Al(t-s)) follows at once. This result

extends (Kanter and Steiger, 1974) to the case a 1.

,
10
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Proposition 1. There exist FT-SaS processes for which the

Xo0 Xo 0 2
conditional mean squared error E (XI-E X1) is infinite.

Xo
Proof. Let H(Xo) = S (0(1)/0(0)) r(dOIXo). That is, E X= H(Xo)

X0. Then

E 0(X1-E 0X 1 ) 2 f{0{O)>O) 00 1(()00)2rdIO

+f(O)>O) XO (H(Xo)-(0(1)/0(O)))2 i(dOjXo). (2.3)

The second term on the right of (2.3) is integrable. The first term

on the right ny be handled using

w(dOIX.) = r(XO10) ,r(dO)/r(Xo )

1 2 -

- (2w6()) e r(dO)/r(Xo). (2.4)

%

From (1.6) it is seen that 0(0) possesses a stable distribution of

index a/2 under 7(dO). Taking A1 with support in the two point set

{-ir/2, w/2} ensures 0(1)--0 a.s., in which case the integrand of

(2.3) is, by (2.4), asymptotically of order r- (a+l)/2 at infinity.

This fails to be integrable if a l. 01

On the other hand, the conditional expected squared error of

prediction given q ={X_ XO is a.s. finite.

Theorem 2.2. Let X be a random function of the form (1.2). For
',

real numbers r,s,t with Ir-sl = It-sl the conditional expectation

E (X -E Xtd 2 is almost surely finite if 9 is a a-algebra with

respect to which X and X are measurable.

V.... ......... .................. . .. ........; ; .. . . . . . ... . . . . .. . . . . . ...... *..... .. "..'-... .. ". - f. ..- "'f ,-A .'. . '.,



4

Proof. Re place ir(d~jXo) by ir(dGIX_ 1 X0) = r(deI9) in (2.3), and

denote by p the correlation p = 0(1)10(0). Then,

,r(d019) (w(dO)/Iw(X 1. X0)))(2w)- 0 (0)(l-p). (2.5)

From theorem 2.1,

E X (1 r(dGI1?) E~ 0 E~ 2 I E
f w~~g 9E(,EXl E0X1 ) ](2.6)

The first term in the brackets of (2.6) is less than or equal to

@(0) (1-p2) and is therefore i(dO)-integrable when multiplied by

the Jacobian from (2.5). The second term in the brackets of (2.6)

2may, on (p X1) be written

0(2) - p0(1) 2-[p X0 + 2 (X -p X0 )] (2.7)

0(0) (i-p)
The first component in (2.7) is p Xwhose square is integrable by

0'.

ir((d0J?). It is therefore enough to bound

D(O 0(2) - peii) 1
L(6 @= 0 1_2) (2.S)

Let Ii Hdenote L 2 norm with respect to the zero-mean stationary

Gaussian process with covariance function 6. Then

0(0) =11Y 1 1 1p11)+ f(0) (X_ -pX0 )1

p 2@(0) + D2 (0) 0(0) (1-P2)

Thrfre 2o 2 Bu n2
TeeoeD(0) 1 onp$1. Bu np= 1 (2.7) is replaced by X 0.

Thus (2.5) is a.s. finite. Note that the Cauchy-Schwartz bound on

(2.8) is inadequate. a

3. FUTURE DIRECTIONS
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The ergodic properties of {Xt} are now completely understood.
t

In (Caxbanis and LePage. 1987). subject to mild conditions on the

spectral distribution, a complete characterization of the invariant

sigma field of the process {X t} is obtained in terms of amplitude

and frequency variables measurable with respect to the remote past.

The non-ergodic component is identified with i.i.d. uniformly

distributed phase variables.

Using the above results, it follows that under rather weak

conditions the predictors E(Xt I X t_6 560L) converge almost

surely to Xt (and conditionally in mean square given the random

spectral amplitudes) as L c i, 6-0 0. Thus, the action of SaS noise

in wave amplitudes is to make prediction ultimately more perfect

than would be the case for Gaussian noise. Since by a result of
44

(Makagon and Mandrekar, 1987) linear prediction optimized for the

given FT SaS distribution is only consistent for Xt under very

exceptional conditions on the spectral measure, it follows that

linear prediction is inferior to conditional expectation prediction

for a < 2. Such results generalize easily to the multiparameter and

dim >1 cases, and will apply to certain types of spatial processes

which are Fourier transforms.

By contrast with the above, linear prediction for linear system

SaS processes, such as ARMA(pq) models driven by i.i.d. SaS random

13
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IV b.W - W-J -X -KV V .V

vectors, is intrinsically interesting due to the way in which the

noise enters additively. The conditional expectations E(X tl I X.

s < t) are a.s. infinite except in trivial cases due to E(IEtI I X,S .s

s ( t) = w, i.e. the conditional expectation of the independent

error. By Theorem 2.1 it follows that such processes cannot be of

the FT SaS type.

If it can be proved that E(IEri I X. s ( t) ( - a.s. for all r

( t, then an obvious choice for non-linear prediction will be to
I.

predict the value zero for C and use the conditional expectation .
t4

predictor on E r' r ( t. This most promising approach is currently

under study.

-V.j
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Abstract

Elementary series constructions, involving a Poisson process,

are obtained for multidimensional stable variables and random functions.

Symmetric stable laws are shown to be mixtures of Gaussian laws. -
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,I I'-. DIVISIBLE VARIA3LES

AND PROCESSES. PART 1: STABLE CASE '

By

Raoul LePage

1. Introduction.

Series decompositions, involving the arrival times of a Poisson

process, have been given by Ferguson and Kiass [1] for the non-Gaussian

component of an arbitrary (real-valued) independent increments random

function on the unit interval. Lea-e and Woodroofe and Zinn [4] have

rediscovered a variant of this decomposition in connection with their

study, via order statistics, of the limit distribution for self-normalized -.

sums (e.g. Students -tb, when sa-pi.n from a distribution in the d=ain.

of attraction of an arcitrarv stable law of index .

The present paper obtains a z: arazttrization of ltaie.. cn .

sp.ces of dimension greater than one. This characteriza tion is fo-alV"

like that of Ferguson-Klass for dinension one, but "ith i. .d. vector

multipliers on the Poisson terms. 7-e law of these moefficient, na; be

chosen proportional to th: Levy r.easure, although. i ot ece.sarv.

The e r c;ults tare a :ir icu ar v e'e- ant for.. :n tn- -. -. r

ta',.ie .aws. ':. ,--'-..-ng , a :,.::u~cs 1> dov'e.e. :,d S.::a

t i - -. 4- I...... -' J7(
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function, and (iv) how to construct an arbitrary harmonizable stationary

symmetric stable random function having multidimensional domain and/or

range. Symmetric stable laws are shown to be mixtures of Gaussian laws.

Partly because of the self-contained character of Kuelbs' paper

[3], in which the characterization of the log-characteristic function

of a stable law is extended to real separable Hilbert space, the

Hilbert space level of generality has been chosen for this paper.

Later extensions of Kuelbs' result to Banach and more general spaces

support a corresponding generalization of these results. In addition

to Kuelbs' result we need a method enployed by Ferguson and Klass to

transform certain dependent series into eventually identical indepen-

dent ones. We also require standard results giving conditions under

which an independent series in Hilbert space converges almost surely

(e.g. [2], Theorem 5.3). The rest of the paper is basically self-

contained and affords a surprisingly accessible and clear view of a < 2

stable laws, and random functions, based on elementary series constructions.

Part II of this paper will generalize these results to the infinitely

divisible case.

" .' . - . . ," .-



2. Notation.

The following symbols and conventions will be in force throughout

this paper.

(2.1) "is asymptotic with"

"equals by definition"

D "has the same distribution as"

'converges in distribution to"

OL 0 < a < 2, an index of stability

{P. j > l} arrival times of a Poisson process

wi:h unit rate

H a real separable Hilbert space

The material of the next section is draw'-n from ,,,

3
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3. Miotivat ion.-"

Limit theorems are not "he subject of this paper. However, we

should not proceed without benefit of the following example, which

exposes some connections between a < 2 stable r.v. and the Poisson

process.

Let {c.,j > 1) be independent of the sequence r and i.i.d.3 - , 1 anLefn - x c|

PpI(c.--1) '"
with '1 = 1) - = and define G(x) x , > 1

Think of G(x) = P(!X > x) Vx > 1, where X is a r.v. symmetrically.

distributed about zero. We will construct particular r.v. XI ..., x

i.i.d. as X, whose normalized sums converge in distribution to the

symmetric stable law of index a. To do this, use the arrival times of a

Poisson process to generate uniform crder statistics, apply G to these,

multiply by the signs t, and permute. As constructed, the normalized

0-0l
sums will actually converge almost surely to - '.. (see (3.1)

below), a series possessing the syetric stable law of index a.

-1/"
In fact, a direct proof of the stability of E... follows

easily from the observation that the arrival times of several (say
44"

K > 1) independent unit rate Poisson processes (run simultaneously)

constitute K times the arrival times of a unit rate Poisson process.

This argument works just as well for E replaced by any vector sequence

(provided the series converges) and suggests the multivariate extensions

of sections 4 and 5.
M

For each n > 1 let U < .< ... < U denote the e,
(1) -2) - -(n) 4

order statistics of i.i.d. random variables U1 ... ,U which are

4 0

f. ......... -. . . . ....... .- ,



uniformly distributed on [0,1. Then for each fixed n > 1, letting-
.A G-I1

X= G1 (U.), vi > 1,

-lci n D -llh -n .- '

(3.1) n a = n G 1 (U
1jj 1 Q )

U-/0 rn EU-/a

-a.

D -1/ -- n ( . Fn l - /

n

- j j n+l

n -/cc i/n
1 " 

.

S 1.

va. s. *a.s. (SLLN)

:1 1

It is convenient to refer to E.F., j > 1 as the residual order statistics,

keeping in mind that the ordering is on decreasing absolute values.

The same example suggests an invariance principle (proved in [4])
for self sum which, regardless of a

oref-normed sums such as X '

1j l1n

converge in distribution to a limit law depending only on the stable

attracting X1. For the r.v. constructed above, Vn > 1,

1. Use . " j and zI j < a.s., and apply the 3-series theorem
j 1

conditional on the sequence r.

5
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nn -CO r-l

D j ~a.s. ].

(3.2) -- -

ftr x~ p2 2/a
1 1 j ,"

That is, the limit law of the t-statistic is that of the t-statistic

calculated on the residual order statistics (see also [6)).

Even the construction of stable independent-increments processes

can be motivated by means of the same example. We restrict our atten-

D
tion to the homogeneous increments case. Let [T.,j > 1) = [Ujj > il,

and suppose the sequences T, C, F are mutually independent. The

tint]
partial sum processes X, 0 < t < 1, Vn > 1 can be effected by1

independent selections of X1. ... X into subsets of sizes [ntl] using

multiplication by indicators:

(n) <[t
(3.3) 1 (t) I(T < )Intl

I (T ntl 7Z< 1l(n) (t) "

(n) n< _i ) < j
I (t) I(T. < + I 1 j < n

S- n+i-1-

Then for each n > 1,

1n_/a Inl-n)3a VO .l/e

(3.4) nntZ X" t[0,1]} D rZn (n) J i/n)
S ' ijj tn+l

a.s. in D[0,11

Z1 I(T. < t) .- , t [ 1] •

.- j - J 3

Details of this argument are unpublished.

2. The square of this t-statistic is sizmply related to the square of

Students'-t, and both have the saze limit law.

6
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4. Stable Laws on H.

Suppose iX.,j > !} are i.i.d. random vectors in a real separable

Hilbert space H and that the sequences X, r are independent. For

each n > 1 denote by K the number of arrival times 7 in the
nA n .- il

interval [0,a], a n  j This choice of a is from [1]. Its
n 

.advantages will be apparent in what follows.

Remark. Sums of the kind Z n  are for each n > 1 defined to zero on

the event K =0. Use ( , ), fl , to denote H inner product and nor-.
n

For each n > 1, x-H, c > 0, (see also [1], pg. 1639),

KK

i(x, cE nx T1/CL ) K ic4In (X ) -.
(4.1) Ee = EE ne 1

f a  lci~x t
=~ a n ::e dt)n

0an ic (x, .-.t

E e X(e -1)d:t.

'c J i(xXl)r dr

Ec (e -1) i
n r

=e

Kuelbs ([3], lemma 2.2) has proved that the log-characteristic

function of a (non-Gaussian) stable probability measure on H is

necessarily of the following form, for a unique £ 1H and finite

Borel measure a on S {XHlx =

7



(4.2) i~,)+ ( (e i(xs) r li(x, s) r ...4 ds)L..
fl -s 1r 2  r1a~d) V~

It is convenient to refer to: -

(4.3) expression (4.2) with -=O.

Define U c(S), pi a/c6, and

A rr ~sr dr
-1/ac 1/ /a -2 1+ -a(ds), Vn > -1a 2

Lemma 4.4 If (4.3) is the characteristic function of a stable law oa

H and if the sequence {X.,j > 1) is i.i.d. ' and independent of e

sequence r , define

1 jOj X.7n >

Then Vx E:H, E exp i(x,X )converges to (4.3).
n

Remark. This result is not altogether satisfactory since convergence of

the series (n n > 11 is throucgh stochastic times {K , n > 1

and is not yet a.s. in H. These defects are remedied in Theorem 4.8

below.

Proof. For each xE H, n > 1, by (4.1),

8r%

n.0



S -I

(4.5) log Eei(xX (n)) i(x, a+- (e i(-Xl) dr
e nl l/c1/

r
L.5

(4.3) J.

From ([1], lemma 2), we conclude that

'K
n+l X. ,1/ >ia<i

are independent. Furthermore, using an argument drawn from [4], Vn > 1,

_Kn_.- .-1/cd 2 2(4.6) Ell- X.. I < a - E(K . -K ) "' <K J n -- n n n n(log n)2/a

which is summable in n. Therefore,

K n 1 /1 a
zYln X -E 71 X.(F - /a  1)

converges in probability in H. A short calculation gives

'-

9
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a -n/ i/a K
(4.7)L A 1a~ a 5 V~(.lt~ ) - J 1ala-/a 2 l

n%

f -2aal2ror

n%

S t%

f4 finite limit A(a) as n -0 C r

(n)
Therefore X converges in probab-lity.

- 0 1+a -  't

-'.

hrof.o e X (n )  converges in probability ad

pendenHt he h series nlueb [2,Tere .())ta

J jI l -2/a2/at - / ) d]i

converges a.s. in H to a random vector with log characteristic

function (4.3).

Remark. Centering is not needed for the case a <1i, nor is it [

needed for the symmetric case which will appear in [4].

Proof. Since X~n  converges in probabi.ity and X~n  is an inde-

pendent series, we conclude by ((21, Theorem 5.3(6)) that X(n)

converges a.s. in H. Recall that with probability one _ finite

M such that (n > 1) (3 smallest N(n) with n = KN(n)). Then

rn >m,

3.
The first term equals The first term above. For the second term

use t = c Or

10
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(.9) x(Nn I lclcn ~ -E 1  a.)(J2:)dt' .

(Ea )A + o(j).
n'4

Since for n > M, (n = ~)> (a ~~ <z

nn

Byth lw fth ierte ogri p .. evnual as'-n

(4.11) (r t1)dt = dt < 'n-n (n 7)
n n

<2 /n log log n (n + o(n))! 0

Therefore,

(4.12) X tz ZX t :X(/ I)dt:-.

which converges a.s. in H to a ran&.~m vector wit! io:,ratis~

function (4..3). Cj-

Remark. The centerings used above also have an interrc-a--ior nvli

(EX1 ) E( "1) which will not be given here.

%
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5. Symmetric Case, Yultiple Representations.

In this section we do not assu:me that X~ is distributed according

to the measure 1.i , or even restrict- its distribution to S. Suppose

X, E, r are mutually independent sequences, with E as in section

3, and tX. j >11 i.i.d. in H- .,ith E~ 1 < 0
-n -

Remark. Series of form E 'C X will be termed symmetric.

-1/Cx

Lemma 5.1. Tetric serie s T i. converges a.s. in

H and the log characteristic function of its limit is E d(x a; rding

tx heH, where B( ) o (cos(r)-l) d i

r|

Proof. The arguments needed are siilar to those of theorem 4.8, but

easier in the s-mmetric case. For each x E H,

F.
n-i(v n '  j )(4.1) r ic I, (X,X)r ]= V -"_

(5.2) log e (, (e -1) "- - / a ri- '
e )a

a0 r

'
-= a E c ( r)-l1 (x X ) < ra ll (X 'X ) -x

10 r

dr
(cos(r)-2 r E (x,Y 1
'0 r

From ([3), corollarv 2.1) the linit in (5.) is the characteristic

.

A% AS

I.-:
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function of a (symmetric) stable 1a-, on H. Since tl:e su-,s

K
n+l -l/ci

, LK  jE j j are independent and symmetric, we have from (:-],

theorem 5.3(1)) that 1n E.X 71 /a converges a.s. in H. Since

eventually a.s. Kn+ < K +1 as n - we conclude Zn E.X.-

converges a.s. in H. 0

Several series may represent the same stable law.

Theorem 5.2. If EjlXJli< 0= then for eey xia <CO henforevery x E H,

EI(x,XQ)l = 1 Ol, (x,*) where XI  is distributed on S

according to the measure:

X

P(X E A) = E1 ( - E A) I

Proof. For every x - H,

1 a
=XX) E (x, ) ala

= xXE Ejx, - )
11i l

, : Yl O E, (xXl ) i

As an example of the above, every symmetric stable law on H has

_O' ='-I 1/a
a construction Z. Z. X. /E(jZ I  in terms of an independent

sequence Z of i.i.d. standard normal r.v.. Conditional on the sequences

F and X the symmetric stable is Gaussian. That is, symmetric stable

, laws are particular mixtures of Gaussian la,.s .with zero means and diffring.

covariance kernels. The latter will not in general differ only by scale,

though this is necessarily true for H = R

131
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6. S .-m er c Sta Ie ?ando m Set P uc: ins.

Let I., j 1: be i.i.d. takling values in a neasurable space

with measurable sets generically denoted A. Suppose -,

are mutually independent, where the latter three sev.;erices are a5 in

section 5. Define

(6.1) x () 1 I(7i VA~ ,"

J J

Theorem 6.2. The series (6.1) is a.s. convergent for each A, is

jointly sirnetric stable for finitely; :.any A at a ti.e, and

X(A
1
) ... , X(An ) are for each n > I mutually independent if

n  are mutually disjoint.

Proof. For each n > 1, x H, real numbers r ,...,r , and measur-

able sets A1, . . . 'A n ,

n .

= r (X, (k=A r, 1 x

If A 1 ...,A are 7utually disjoint then

) 1 n E A r

14
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Rema r-..Te~Li :S ~. - T

way in in

dependenze are idntlf =c!wi: '

sequences ,

Remark. Schilder S; and Kuelbs 3 have explored a r .:ruentat iu.-

multidimensional s'-etric stable r.v. by means of a s*:t.-astic r

with respect to a one-dimensional s:able In-epender.: t rcze:, r

Theorem (4.8) and lez'a (5.1) sharpen and eytend su". rerresenttio:.

by connecting them :.ih the Fergusc'n-Kilass representatiDn, making

explicit the choice f" coefficients required to obtain ah stable
4.

law , and establishing H convergence of the indicLted .erieS"

R eark. Suppose K I and Y - -- , I .

independently constr-::-ed (as per (5.1)) sv-.etric sr; .<r.v.

values in H. Then for an arbitrary choice o: real ::'.n-,br; r.

the sum V is representable -" were
-Ilkk -I jj k-

are i.i.d. and an equiprobahle random sel'eti,. ri,, K .. K

,1/a
K r - This uses the property (discussed in ce~:( n 7, of

n nl"

Poisson processes run -nLmultaneouslv.

including the n:',-s'.-mmetric Stai e law:.

15
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5as-all, .e seek to construct the stable analogues of Gaussian

stati:,.narv random f-:n7tions havin.g a -aonit decomposition. The

charazteristic function of such a gaussian random function involves

E.7 n i('' k )  -

j\--=l rke

.here t is generic for a point of the domain, and ('V) is
o

a random linear function on the domain. The stable analogues of

these Gaussian random functions have characteristic functions that A

th
eploy an a -power in this integral instead of the 2, but are

otherse the same. 2efine Vt,

(7.) X(t) cos((, ,t) + -

2 22

where are i.i.d., I are i.i.d. uniforms on [-,-], ,X

are as in section 6, and ,, C', £, X, 7 are mutually independent

sequences. The series (7.1) is a.s. convergent in H for each t

by le:=.a 5.1. The random function X( ) is clearly stationary

because ' are uniform on [-7,], but this will also be a simple

consequence of the form,., of the characteristic function which we now

compu te.

i(xj n r X(t ))
(7.2) log E e k-I k '

e

.._n cos((", -l
i j l4 =1  L_ jj jo

=log e Ee ..l

_n r~lk cos((i\ ,t k ) +21),a-

16
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The fira term in the rig ht side of (7.2) reduces as follows, with

nl lkoz ~ *e

(7.3) E 0 rk cos((t. tt )+ E2 ize 1+ ze l
1 1' ko 1

= E zt L2 -.- ,z I,+z z e

=Ez 2- C(a)

where

C(a) 1 1+e OLdr' :14-e ad
) -7

for all real . e have therefore prov~ed,

Theorem 7.4. The random function defined by (7.1) converges a.s.

H for each t, and has log characteristic function

nC i(A 7t k )

2B(z-)C(0)E:Zk~ r,- e

for all n > 1, ri, ..., Ir. t LI... It .

Corollar. 7.5. The random function (7.1) is non-ergodic for each a < 2.

Proof. B-, using (7.2) the construction (7.1) remlains valid if are

replaced by Z./(FZ, j> 1. where Z is an independent i.i.d.

standard nornal sequence. Conditic-al on the sequence-, ,X,7 the

17 I



process (7.1) is a.s. stationary Ca,-ssian with discrete spectrum,

therefore conditionally non-ergodic a.s..

18
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8. Operator Stable and Infinitely Divisible Multidimensional Laws.

Infinitely divisible laws, of which the operator stable laws are a

special case with particularly interesting structure, are treated in

Part II. In brief, this is what happens: A construction of infinitely

divisible random vectors is given by Z{X.H(ij,X)-y}, in which the real

function H is monotone decreasing and positive for each value X., and is deter-

mined from the Levy measure. A construction of full operator stable random

vectors in a finite dimensional real vector space Rd is {A(F17)X.-y. :, in
J 22

which the vectors y1 are non-stochastic centerings, {A(t) = exp(Blog t),t > O}

is the group of linear transformations figuring in the definition of operator

stability (e.g. Sharpe {9]), and the vectors X are i.i.d. from a probability

measure (a factor of the L6vy measure) on a set of generators of the subgroups

induced by A. The methods of sections 4 and 5 carry over, as will now be in-

d
dicated. If X is any i.i.d. sequence in R , and X is independent of 7, then

vxR d  n > 1,

nn
=81 lo X ( X r 1E(ei(XAtX) i)2 ! "

Ja t
n

As usual, the symmetric case is simplest. If we examine Sharpe's Theorem 5,

we discover that the limit of (8.1) is precisely the form taken by the oper-

ator stable in this case, provided we choose for the distribution of X the

probability measure figuring in Sharce's representation of the Levy measure

as a mixture, this measure being placed on (Sharpe's notation) generators

characterized b s t > s =s , V s > 0. Arguing as in section

co d
5, we conclude ZI A(? )X. converges a.s. in R and has the log-characteris-

tic function which is the limit of (8.1).

19
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9. Priority of P. Lvv.

P. L~vy has anticipated the series constructions of one dimensional

stable r.v. with a < 2. For the case of a positive stable with a < 1,
CO

up to scale and location, this construction is z fT/C , with
>11 eingthe rrivl ties o

{r., j > 1} being the arrival times of a Poisson process (on R ) having* 3

unit intensity function. L6vy writes the series in the form 1 Ux, where
x

(9.1) {Ux, x > O} are independent r.v. and

(9.2) P(U x = x) = 1d- l-P(U 0)
l+at x

x

Here is my abstract of the key parts of Levy's (1935) arguments for the

above case:

d x 0 < ] : U 0 , x > x 0 is finite for % 0  0'

x0 x S.

and also,

(94) I fQ = a(1-a) U40(as 0 )
a 1-a o x x 0

Therefore, for arbitrary cl, c > 0 (defining c c + c2  a k

independent copies),

20



(1 2Dist. (1) -(2)

(9.5) c U x + c 2  
Ux  = yx + 2Yxx x x

Dist. (
-x )

xDist.J

c c 3  Ux ( stable) "

x

'-

where (Y k) x > 0} have respective intensities c k a k= 1,2,3

and are independent for k = 1,2.

The above arguments do yield a proof of the representation if we

apply them to the independent sub-sums Ux [bnI , bn]}, n > 1,

where b = log n. This is essentially the argument of Ferguson-Klass
n

(1972). The particular choice of b , n > 1 is one which ensures thatn -

eventually as n - each sub-sum contains at most one sumnzand, so i:

really is (almost) as though one could add independent U one at a time
x

toward x - 0. A quite different justification is to interpret ) U
x

as a generalized process driven by "white noise" {Ux , x > 0).

Levy's observations are easily overlooked. Ferguson-Klass, Vervaat

(1979), LePage-Woodroofe-Zinn (1979) (in manuscript form), rediscover

the Levy construction as byproducts of the following independent pursuits

respectively: (F-K) -representing the positive non-Gaussian part of an

independent increments random function as the sum of its ordered jumps.

(V)-examining a shot-noise associated with the asymptotic behavior of the

solution of a stochastic difference equation as time is increased,

(L-W-Z)-studying the limit behavior of the normalized order statistics
5-

21
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from a distribution attracted to a stable. Resnick (1976) reconciles the

Ferguson-Klass construction with the Ito representation, meaning by the

latter Ito's generalization of Lvy's stochastic integral construction

by a Poisson random measure.

Acknowledgement. The estimate (4.6) was suggested by J. Zinn. Helpful

discussions were also held with V. Mandrekar, M. Woodroofe, and M. Steele.
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